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ELASTIC-PLASTIC-CREEP-LARGE STRAIN ANALYSIS AT ELEVATED
TEMPERATURE BY THE FINITE ELEMENT METHOD

Walter E. Haisler and Duane R. Sanders

Aerospace Engineering Department
Texas A&M Univers i ty

College Station , Texas 77843

ABSTRACT

This paper is divided into three parts. Fi rst, a review of currently

available incremen tal theories of plasticity and creep constituitive

models is given . Second , a formulation is presented for the non-isotherma l ,

elastic—plastic-creep-large strain analysis by the finite element method.

Thi rd, results obtained with the AGGIE I computer program for several

isotherma l , elastic-creep and elastic-plastic analyses are presented.

The present numeri cal results show good agreement wi th experi mental and

other numeri cal results .

INTROD UCTION

Although the finite element method has long been recognized as a very

powerful analysis tool , its usefulness has been negated to some extent due

to our inability to find suitable constituitive relations for modeling

problems with contined elasti c-plastic—creep -large strain behavior. This

fact is brought out when one considers the wide abundance of plasticity

hardening rules and creep constituitive equations which have been developed.

Many of the shortcomings of the constituitive models are due to simplifying

assumptions such as the uncoupling of creep, plasticity , rate and other

mechanisms and the separation of inelasti c strain into time dependen t and 



independent parts. Althoug h early researchers were forced somewhat into

these assumptions , there currently seems to be a trend in the other di rection ;

for example , the so-called “unified theories ” are attracting more and more

attenti on .

the purpose of this paper is severa l fold. Fi rst, to review the

classical plasticity theory and the several categori es of creep constituitive

models currently available. Second , to present an incrementa l formulation

for the non—isotherma l elasti c—plasti c—creep-large strain analysis by the

finite element method. And , third , to present some numeri cal results

for severa l elastic-creep and elasti c-plastic prob l ems that have been obtained

wi th the AGGIE conputer program.

INCR EMENTAL THEORY OF PLASTICIT Y

The classical incremental theories of plasti ci ty make use of an initial

yield condition , a hardening rule , and a fl ow rule in characterizing the

strain-hardening response of a material. Al though these classical theories

continue to be utilized extensively in finite element computer programs ,

this may be true only because more suitable models have not yet been

developed. Comparison [1,2] of the models wi th experimenta l results indi cates

relatively good agreement in uniaxial cases under simple loading condi tions .

However , for bia xial and triaxial cases and situati ons where the loading is

cyclic, when creep and plasti city interact , when the strain rates are hi gh ,

etc., the results are often in disagreement with experiment. The di ffi culty

is compounded by the fact that the hardening rules give good results for

some materials but behave poorly for others.

Yield Condition

The two most wi dely used yield conditions are the Tresca (maximum

shear stress) and von Mises 
~~ 

theory) condi tions. For isotropic metals , 
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the von Mises yield condition generally provi des a better description

of initial yielding than does the Tresca condition . However , for rocks

and soi ls , the Tresca condi tion is often used. Other yield condi tions

have oeen proposed , however , these have not found wide use because of

thei r mathematical complexi ty . The von Mises yield condi tion is used

in all work reported herein.

Flow Rule

A flow rule is used to separate the total strain increment into elasti c

and plastic components . The mos t generally accepted flow rule , termed the

normality condition , states that as the stress state of a material point

comes into contact with and pierces the material ’s yield surface , the

resulting plastic strain increment is along the outward normal to the

yield surface at the point of penetration . Experimental evidence has shown

that the normality conditi on is generally valid for a wide range of mat-

erials [3].

Hardening Rule

The hardening rule provi des a description of the changing size and

shape of the subsequent yield surface during plasti c fl ow . In addi ti on to

simple expansion and/or translation , experimenta l evidence has shown that

subsequent yield surfaces may exhibit corners , general distorti on , var i ous

Bauschinger effects, and dependence on prior cyclic history , strain rate

and hold time to menti on only a few parameters [3]. For simplici ty, mos t

finite element programs make use of hardening rules which account only for

expansion and/or translation of the yield surface.

The classical isotropic hardening rule postulates that the yield surface

expands unifo rmly during plasti c deformation . In its simplest form wherein

one assumes the von Mises yield condition and associated flow rule, the rate

—-- - .-- .



of strain hardening may be obtained by relating a value of equivalent total

plasti c strain to a point on a uni axial stress—strain curve , so that a simple

tensile test is all that is necessary to determine the hardening rule

parameters. The simplicity of applying the isotropic hardening rule has made

it ve ry popular in finite element plasti ci ty analysis.

In contrast , the kinematic hardening model of Prager-Ziegler [4]

proposes that the yield surface translates as a ri gid shape during plasti c

flow; the di rection of translation being given by a vector connecting the

curren t center of the yield surface and the current stress state . This

gives rise to an i deal Bauschinger effect in which the reverse yield stress

is lowered by an amoun t equa l to the prior strain hardening.

The Besseling—White (mechanical sublayer) model [5] makes use of a

superposition of elasti c-perfectly plasti c stress states to approximate

strain hardening behavior. This mode l is often idealized mechanically

as a parallel arrangement of elasti c-perfectly plasti c layers whose yield

stresses are adj usted to duplicate a piece—wise lineari zation of the uniaxial

stress-strain curve ( the number of layers being equal to the number of points

selected on the stress-strain curve). Li ke the kinematic model , the mechanical

sublayer model predi cts a rigid translation of the yield surface.

The hardening model proposed by Mroz empl oys the concept of a field

of surfaces of constant work hardening modu li. Each point of a piece-wise

linear uniaxial stress-strain curve is represented in stress space by a

surface geometri cally similar to the initial yield surface but of di fferent

size. The yield surface is assumed to expand and translate wi thin this field ,

contacting and pushing each surface along wi th it as each is encountered.

Conceptually, the Mroz model is similar to the mechanica l sub layer model.

Recently, Krieg [6] proposed a two surface plasticity model where the

4
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yield surface translates and expands within an enclosing “limi t surface” , which

also is allowed to translate and expand independently of the yield surface.

The hardening modulus is then assumed to be a function of the di stance

between the two surfaces at the loading point. The mode l requi res two

material tests: a uniaxi al tension test carried out to moderate strains and

a uniaxial loading, un l oading, reverse loading test. The model has not yet

found wi de use but would appear to be an improvement over simple isotropic

and kinemati c hardening. Another model wh i ch has not found wi de use as of

yet is the piecewise linear strainhardening theory of Hodge [7] which makes

use of a yield polygon .

As experi mental evi dence points out , isotropi c end kinemati c hardening

tend to bracket actual material response in many cases and , for this reason ,

a number of combined isotropic -kinemati c models have been proposed. Most

models are based on a constant ratio of expansion to translation although

some resul ts have been reported for a vari able ratio based on accumulated

plasti c strain [8].

CREE P CON STITUIT I VE MOD ELS

As in plasti ci ty theory , there exists a wide vari ety of consti tuiti ve

equations which have been proposed for modeling creep behavior . Unlike

the plasti ci ty models , the various creep models differ si gnifi cantly in

mathematical form and phys i cal basis; some are purely equation of state

approaches , some are based on viscoelast ic and heredita ry integra l methods ,

some are based on adhoc rules while some have a rigorous thermodynami c

basis , etc . This secti on will provide a brief overview of severa l creep

models (by category as listed below) wh i ch are currently available. For our

purposes , the following categori es are listed: 1) Phenomeno logical (equation-

of-state) theory , 2) Memory or hereditary theory , 3) Nonlinear viscoelasti c

5 
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theory, 4) subelement theory , 5) Krempl ’s theory, 6) Valanis ’ theory , and

7) Unified theory.

The most widely used means of describing creep behavi or is the phenom-

enological (equation-of-state ) creep theory . A good revi ew of this theory

is given in Refs. [9] and [10]. This representation of creep strains is

similar to that used in the i ncrementa l theory of plasticity , i.e., three

relationships are used: 1) uniaxial creep law (obtained from a uniaxial

creep test), 2) a flow rule , and 3) a hardening law . Ni ckell ’s survey [10]

of computer programs which incorporate creep strains shows that a majori ty

of these programs use the phenomenolog ical creep theory . References [11]

and [12] show application o~ this theory to plane stress , plane strain , and

axi symetri c problems which contain no plasti c deformation. In ~ef. [13],

isothermal elastic-plasti c-creep computer programs are developed for two-

dimensional analysis. In Ref. [14], a non—isotherma l elasti c-plastic-cree p

computer program is developed for flat and curved , thick and thin shell

elements of triangular and quadrilateral form. Subtle refi nements to the

phenomenologi ca) theory have been discussed and their importance stressed

by varions researchers . In Refs. [11] and [12], the importance of time

step size on convergence and solution time is pointed out. Reference [15]

indi cates the i mportance of the subincrementa l approach as applied to creep

strains. For load reversal conditions , auxiliary procedures are outlined

in Ref. [16] which avoids the inconsistency which is present if the

phenomenologi cal theory is applied in the usual manner.

The memory (or heredi tary ) theory has a good theoretical background [17]

and has been implemented into a finite element computer program by Rashid [18].

A compa rison of advantages and disadvantages of the phenomenologica l and

memory theori es is given in Ref. [19]. This theory is similar to linear vis— 

~~~~~~~~~~~~ . ~~~--~~~~
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coelasti ci ty , however , metals are characteri zed generally as nonlinear

viscoelasti c materials and generally do not obey the linear superposition

that linear viscoelasti c materials do. However, both Schapery [17] and

Rashid [18] have demonstrated that the simple integral approach as used in

linear vi scoelasti ci ty can be used if a reduced ti me replaces the physical

time. Normally, creep, rel axation and/or recovery tests are required to

determine the necessary material parameters .

In the nonlinear viscoelasti c approach , the consti tui ti ve relati on is

expressed as an integral polynomi al [20]. It is pointed out in Refs. [18]

and [20] that although the multiple integra l approach does hol d promise, the

experimental data (multistep creep tests) necessary to implement this theory

are generally not available at this time. As of yet, no application of

this theory to a production -scale finite element computer program has

apparently been made .

In the subelement theory [21], the material is i dealized by a number of

subelements each possessing secondary creep behavior , but wi th di fferent

creep rates. Due to interaction of the subelements , pri mary and recovery

behavior can be determined from this model. The necessary material constants

are determined from the results of a standard creep test. Details of a finite

element program utilizing the subelement method are reported in Ref. [21].

Krempl [22 , 23J has presente d a consti tuitive theory for modeling

elasti c—plasti c—creep response which is based on total strain (as opposed

to the conventional approach where the total strain is separated into various

components). Operational definitions of aging, history dependence and rate

dependence are included. A loading and unloading cri teri a is employed whereby

the elasti c response is handled as an integra l part of the consti tui ti ve

equation . The constitu i tive equation contains separation functions for

7



describing rate and history dependence . The history dependence is accounted

for by a tensor valued functi on called the microstructure memory function

wi th a discontinuous growth law wh i ch is operati ve at points of unloadi ng and

serves to expand the yield surface due to prior strain history. Rate dependence

is modeled by ti me deri vati ves of stress in a differential consti tuitive

model and by time dependence of the kernel in an integral form of the

constituitive law . Krempl ’s theory has not yet found wi de use in genera l

fini te element programs.

The endochronic theory of Valanis [24] and the “unifi ed” theories [25-27]

represent sign i fi cant departures from the classica l approaches for handling

elastic-plasti c-creep behavior. Valanis develops his endochronic theory from

continuum and thermodynami c concepts but avoi ds the definiti on of a y ield

surface . The unified theori es treat the inelasti c strain as a unified

quanti ty which is not separable into ti me dependent and time independent

parts. This inseparability has been observed experi mentally, especiall y at

high temperatures , but has been largely ignored for computational simplicit y .

Although the unified theories have not yet found thei r way into general finite

element programs , these authors are of the opinion that this approach wi l l

ultimately provide much more reliable constituit ive models.

I NCREMENTAL EQUATION S OF EQUILI BR IUM

In this section , an incremental finite element formulation for the

non—isotherma l , elasti c-plasti c—creep-large strain prob l em is developed.

One may begin wi th the equation of equilibri um wri tten in terms of the 2nd

Pio la—Ki rchhoff stress

~~ ~~
g
~~ i i  + •

~
-
~~~

- ) ]  + p F 1 = 0 ( 1)

wh e re a3 and u~ are Lagrangian coordinates and displacements , respect ively ,

8 
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Sik is the 2nd Piola-Ki rchhoff stress tensor , p 0 is undeformed density and

F01 is the body force per unit undeformed volume per unit mass. Applying

the vi rtual work principle at time t + ~t yields

f ~~~t ~~~~~~ dV = ~Rt+
~
t ( 2 )

V 0
where

aRt
~~

t 
= I ~~~~ 6u t+At dS + p

0F~~
t 

our~~ 
dV (3)

and 6Ei~~
t is the variation of the Green-Lagrange strains at ti~~ t+At and

Tr~
t are surface tract ions at time t+.~t applied to the deformed surface S.

Equati on (2) may be put into incremental form by writing

= St + ~S.
13 13 13

(4)

EtY~
t = E~ . + ~E.13 13 13

where S~ and ~~ are stresse s and strains at time t and AS~ and ~~~ are

increments of stress and strain , respecti vely. The strain increment may be

decomposed into components which are linear and nonlinear in the dis placement

increments

AE~ = AE~J + t~E~~ ~5)

where

L ~~~ ~~u. ~Au au~ au t at~uS E. .  1/2 (~~~ 
+ -

~~~~~~~~ 
+ k 

-~~~ + 
~~~~~13 3a~ ~a 1 ~~ ~~ aa

~ ~~

= l/2( -~ ---- 
~~~~

— 
)

Substi tuting Eqs . (4) and (5) into (2) yields

S~ 6AL~ dV + S~ 6~E~~ dV + ~~ E~~+~E~~)dV 
=

9
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The stress increment may be decomposed into two components , one which is

dependent upon total strain and one which is independent of strain (i.e.,

creep, therma l , etc.):
= Dij ki ~~ki + AP .. (8)

where Djjkl is the usual effective tangent modulus and ~~~ is a stress

increment due to strain independent phenomena (as is usually assumed in

creep). Substituting Eq. (8) into Eq. (7), making use of Eq. (5), and

neglecting terms which would be nonlinear in displacement increments ,

yields the following:

‘V 
~~~ Djjkl 6(~tE

1
ç~) dV + f (S~ + AP~~) 6(~E~~) dV

0 

= - (S~ + ~P..) o(~E~.)dv + 

(9)

The term ~~~ may be interpretted as the change in stress requi red to

account for the creep and therma l strains. Equation (9) takes on the

following form when put into matri x form

[M]{qt~~
t } + ( K ~~ + [K~~]){~q} = {Rt~~

t} - ~F
t} (10)

where [M] is the mass matrix, [K~] and [K~L
] are “linear ” and “nonl i near”

sti ffness matri ces , 4R t~~
t} is a vector of forces due to externally applied

loads , {Ft} is a vector of forces due to internal stress , and {~q} is the

increment of the nodal displacements . Complete details of the deri vation

of the quantities in Eq. (10), without creep , may be found in Ref. [28].

We now present a suninary of the determination of Djjkl and AP~
for kinematic hardening for the non-isothermal case. We assume a yield

—-- - - .~~~~~~~~-— ~~~~~~ - --- -—--- -~~~~~ -~~--~~ - -~~~~~~~~~~ .-- 
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surface can be expressed by

F = f - K2 = 0 (11)

For kinematic hardening, we wri te

= 1/ 2 (~ - 

~..)(5 .  - ( 12~‘ ‘~ jJ ~13 1J ~1J ’ ‘ ‘
and S~ and are deviatori c components of the 2nd Piola-Ki rchhoff

stress and yield surface center , respectively. The yield surface size

parameter , K, is taken to be a function of temperature , T , such that

K2 
= l/3[Oy (T)] 2 (13)

where ay is the temperature-dependent initial (or subsequent) yield stress.

In general , one can wri te
F(S~~ a~~~, ~~~ T) = 0 (14)

where E~
’
~ is the plasti c component of strain.

For a stress point to remain on the yield surface during plasti c flow

requi res that 2
F = ____ — — 

a(K ) t = 0 (15)

where the dot denotes rate. Considering Eq. (14), one can also wri te

dF = f~— dS~ + 

~ 
dE~

’
J 

+ .}~dT (16)

and note that dF = 0 for a stress point to remain on the yield surface.

It is assumed that the plasti c strain rate (flow rule) can be expressed

as 
~ 

~~~~~~

-

~

- 
~~ ( 1 7)

where A is a scalar parameter to be determined.

From the normalit y condition ,

•P ~F
~~~~~~~~~~~~~~~~~~~ 

= c E ~3 --- - 18

11
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where c is a scalar (hardening modulus ) to be determined from a uniaxial

stress-strain curve.

Substituting Eqs . (17) and (18) into (15) yields

~~~~~~~~ 

[~~ 
- c A 

~~~ ~~kl 
Skl + 

~~~~~ t)] - ~ K )  ~ = 0 (19)

For small elastic strains , the decomposition of strains is assumed

= 

~~~~~~~ 
- 

~ n 
- 

~~ (20)

where Eijmn is the elastic consti tui ti ve tensor and E
~n 

are the creep strain

components. Substi tuting Eq. (17) into (20), combining the results wi th

Eq. (19) and solving for A , one obtains :

E ~~~(E ~ C 
~ 

- ____

= 

ijmn mn mn ~T (21 )

where
= 
[c 

~ pq 
~~~ 

+ Epqrs ~~~~~~ ~ 
] ( 

~~~~ kl - 
~~~~ 

~ 
) (22)

Substituting Eq. (21) into (19) and the result into (20) and then comparing

the final result to Eq. (8), one can show that the instantaneous modulus tensor

is gi yen by E ~~ -~~— 
Eijvw ~S ~~ tumn

D. . = E . .  — —  
vw ~u 23

ij mn ij mn

and the rate of change of stress due to creep strains , temperature changes ,

etc. is gi ven by a(K2) ~FaT as..
P. . =-D . . + 

13 ( 24)
ij ijmn mn

Although the above expressions are given in rate form, the conversion to

incremental form is obvious.

_ 
_ _ _ _ _ _ _ _ _
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COMPUTER PROGRAM

The finite element computer program , AGGIE I , is based on the

incremental formulati on outlined above . The program is capable of handling

two- and three—dimensional geometries utilizing isoparametri c solid and

shel l elements . The plasticit y theory contained in the program is based

on the von Mises yield condition , the associated flow rule , and several

opti onal hardening rules (isotropi c , kinemati c , combined isotropic-kinematic ,

or the mechanical sublayer model). At present , the program contains the

equation-of-state creep model wi th auxiliary hardening and load reversal

rules reconmended in Ref. [16]. The creep strain model may be specified

in ei ther functional form or in terms of a creep strain vs. time data

matrix.

SOME NUMERICAL RE SULT S

This section presents some numerical results obtained wi th the AGGIE I

computer program. Problems involving primarily large strain and elastic-

plasti c behavior have been previously reported in Refs. [2] and [8] and

consequently, problems invol ving creep response are emphasized here. Both

of these references contain experimental-numer ical comparison studi es of

several work hardening rules and the interested reader is di rected to these

for details.

Figures 1 and 2 present creep strain vs. time results for a uniaxial

test specimen subjected to an isotherma l , monotonic and load reversal

condi tion , respecti vely. The experimental results were obtained by ORNL [29].

The material in Fig. 1 is type 304 stan l ess steel at 1 200 °F , ORNL preliminary

heat no. 8043813. The effecti ve creep strain equation was given by a 5,000

hour law :
A( 1_e~

’t) + kt (25)

-- -~~.--~~-~~~~- -~~~~~~~~~~~~~ - - - - ~ - -~~ ~~~~~~ 
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where

A(&) = 2.33 x 10-6 -3.083

r(~) = 1.354 x lO~~ exp(0.l29 ) (26)

k(~ ) = 7.9i x lO~~ [sinh(0. l932 )]4.0

and ~ is in ksi and t in hours . The material in Fig. 2 is type 304 stainless

steel at 1100 °F, heat no. 9T2796. The creep equati on parameters are given

by
A(s) = 5.436 ~ ~

-5 ~l.843

r(~) = 5.929 x 1O 5 exp (0.2029 ~) (27)

k(~) 
= 6.73 x l0~~ [sinh (0.1479 )]3.0

In both cases , the results obtai ned wi th the present computer program are

seen to be in reasonable agreement with the experimental results . It shoul d

be noted that these results were obtained using strain-hardening based on

total creep strain.

Figure 3 presents the isotherma l , elasti c-steady creep response for

an infinitely long, thick—walled cylinder subjected to a constant internal

pressure of 365 psi. The infinitely long cylinder has an inner radius of

0.16 inches and an outer radi us of 0.25 inches . The material is assumed

to have a Young ’s modulus of 20 x io6 psi and a Poisson ’s ratio of 0.499.

The creep law is gi ven by

E = 6.4 x l0
_ 1 8 

~~~ (28)

The present results agree exactly wi th those of Greenbaum and Rubinste in [30]

and with an analyti cal solution reported in Ref. [30].

Figure 4 presents the isothermal , elastic-creep response for the same

infinitely long, thick walled cylindri cal geometry descri bed above subjected

to a constant internal pressure of 3,650 psi. The material is type 304

stainless steel, heat no. 9T2796, at a temperature of 1100 °F. Young ’s modulus

_ _ _ _  ~~~~~~~~~~



at this temperature is approximatel y 2 1.7 1 x 106 psi and Poisson ’ s ratio is

0.3. The creep law parameters are the same as that given for the tes t

shown in Fig. 2. The finite element model consisted of seven 6-node

axi syninetric , isoparametri c elements (with the plane strain condition

imposed through boundary conditions). The effective stress (~) results

shown are for numeri cal integration points approximately 0.002 inches from

the inner and outer surfaces . The present results are compared to those

obtained with the CRE EP-PLAST computer program [31]. The discrepency in the

two solutions may be due to modeling differences although we cannot be sure .
Figure 5 presents deflection vs. load results for a simply supported

beam with a shear load applied at the center. The beam (B9 ) is 25 inches

long , 2 inches hi gh and 1 inch wi de and supported such that the effective

length is 24 inches . The materi al is type 304 stainless steel (heat

9T2796) wi th a Young ’ s modulus of 21.71 x 106 psi , Poisson ’ s ratio of

0.3 , and a yield stress of 9 ,000 psi at 1100°F. The beam was subjected

to a load of 2,000 pounds , this load was then held constant for 312 hours ,

and then increased to 2 ,250 pounds . The finite element model consisted

of fi ve 8-node isoparametric elements and the kinematic hardening model

was used to represent the strain hardening response. The time-inde pendent,

elastic-plastic computer results are compared to experimental results [32]

in Fi g. 5. It is seen that the results agree quite well up to the 312 hour

hold period. During the ho ld period , the material hardens up and the

results do not agree after the load is increased (since the time independent

plastici ty theory does not account for this).

FUTURE WORK

The work wh i ch has been reported herein has been based on incrementa l

plastici ty theory and an equation -of-state creep model. The authors are



_ - ---~~~~~~~~~~ -- -- -~~~~- -~~~~~~~~~ ~~~~~~ --—- - --- -----~~~~~~~~~~~~~ —--- -— —~~~~~~~~~ - - ~~~~~ - - --~~~~~~- - -  

currently evaluating the various creep constitui tive models by developing

uniaxial and biaxial computer programs for each and comparing numeri cal

results with experimental results . Although we have not yet studied in

detail the unified creep-plastici ty formulations , it would appear that
• they have great promise. In the present paper , we have not included any

numeri cal results for the non-isothermal or combined creep—plasti ci ty

problem; however , we wil l  present such results in the near future .
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